CMake && Friends

Open source tools to build, test and
package software
CMake, CTest, CPack, CDash
Y kitware

CMake && Friends

Open source tools to build, test and
package software
CMake, CTest, CPack, CDash
Y kitware

Preface
ANL has CMake on Theta and Cooley

CMake can be acquired from numerous locations for your local
machine

https://www.cmake.org/download/
From your Linux distribution
Visual Studio 2017+

apt.kitware.com for Debian and Ubuntu
Snap universal linux package
pip install cmake

homebrew)))((Kitware

https://www.cmake.org/download/

aaateeSSeSSSSSBWEIN N N . ee
Preface

You will need to install the exercises
Download at:
<ANL> resource

WKitware

C' | @ Secure | https://data.kitware.com Kltwa re Data

% Apps (X) KWiK|Time Card [ParaView Glance [irks

Kitware Data [§

n
i Groups f:‘i Collections s Courses

dat:
data

Kitware Data

a0 Collections

CMake

Q
4

& Groups

au O B CMake_and_Friends.pdf & @
sers

B ctest_sanitizer_examples.tar.gz &
&

@
@

B} externalproject_example.tar.gz
‘ O Btutorialtar.gz & @

B tutorial.zip & @

¥ Metadata

KKitware

MEDICAL
COMPUTING

¢ Kitware

Collaborative software R&D

Technical computing

Algorithms & applications
Software process & infrastructure
Support & training

Open source leadership

HPC &
VISUALIZATION

SOFTWARE N
PROCESS ;

COMPUTER
VISION

\»‘(Kitware
IO IS Y o s S S KX S I I I

)(Kitware

Successful small business
Founded in 1998; privately owned; no debt

170 employees; 1/3 masters, 1/3 PhD
S31M revenue in 2018

Awards

HPC Best visualization product
Tibbetts award for outstanding research
6-Time Inc. 5000 Honoree

| Best HPC
TOP Visua(I’ization
;/:_IAOCIZQEI§ Taennoluzy

HPC

‘ Editors’ Choice
TIMESUNION Awards 2016

timesunion.com

2006 National %y
Tibbens Award

Prescesnd

Lok Wncorporated
10 Revopo o your \
Outstanding Lortriboten © O
SBIR Program
bR TS R —

SBIC

Chamguoning Sovad Bussess Yox Yooy Cotttpus

WKitware

— |

ﬂ&‘

MEDICAL
COMPUTING

)(Kitware

i

v
Y

VISUALIZATION

Supporting all sectors

SOFTWARE

PROCESS
75+ Academic institutions

50+ Government agencies and labs
100+ Enterprises

COMPUTER
VISION

DATA &
ANALYTICS

\»‘(Kitware
IO IS OO Y o s S S X S I I I

F;
K
¥

Open source platforms

VTK & ParaView interactive visualization and
analysis for scientific data

TG e

latform Build Syste)

Luis ez

Uillam Schroeder

ik Ly By ad o s
llllll LT

ITK & 3D Slicer medical image analysis and
personalized medicine research

CMake cross-platform build system

CDash, CTest, CPack, software process tools
Resonant informatics and infovis

KWIVER computer vision image and video
analysis

Simulation, ultrasound, physiology, information
security, materials science, ...

Introduction to CMake

WKitware

O I I SIS I I I I I IO Y
What is a Build System?

In the beginning there was the command line:
% gcc hello.cxx -o hello

WKitware

O I I SIS I I I I I IO Y
What is a Build System?

Maybe use a shell script to avoid typing
buildhello.sh

#!/bin/sh

gcc hello.cxx -o hello

% buildhello.sh "
W Kitware

O I I SIS I I I I I IO Y
What is a Build System?

Even better use the make tool
Makefile
hello: hello.cxx
gcc hello.cxx
% make hello

// what about #include files?
\))((Kitware

What is a Build System?
Shell scripts Co

& github.com/Kitware/VTK

<> Code Pull requests 5 Actions Projects 0 Security

Mirror of Visualization Toolkit repository https://gitlab.kitware.com/vtk/vt

and command
lines and
simple
makefiles wor

D 72,795 commits ¥ 7 branches 9 0 packages

Branch: master v New pull request

{ martinken and kwrobot Merge topic 'segy_2d"

@ .ExternalData Teach SourceTarball.bash to split source and data

i github github: add a PR template to point to gitlab
B Accelerators/Vtkm Merge topic ‘add-missing-overrides’
| CMake cmake: add an uninstall target
@ Charts/Core Replace many scoped new(]/delete[] variables wit
| Common Merge topic ‘const-madness2'

B Documentation Add a variadic vtkTypeList::Create function.

f f f. | B Domains Merge topic 'Feature_add_UTF8_everywhere'

O r a e W I e S ’ B Examples Merge topic 'Feature_add_UTF8_everywhere'
W Filters Merge topic ‘add-missing-overrides’
I GUISupport Fix qwidgetrep pick method

b u t n Ot fo r I O t S B Geovis Add missing override keywords for destructors
Wm0 Add a force2d option for segy

L] L[] B 2
Of fI IeS I I ke V I K = INV14288777.pdf iod = INV14325686.pdf ~

B

vtkABLh

vtkAOSDataArrayTemplate.h

=) vtkAOSDataArrayTemplate.txx

=) vtkAbstractArray.cxx

vtkAbstractArray.h
vtkAndroidOutputWindow.cxx
vtkAndroidOutputWindow.h

vtkAnimationCue.cxx

) vtkAnimationCue.h
=) vikArray.ox

) vtkArray.h

vtkArrayCoordinates.cxx
vtkArrayCoordinates.h

vtkArrayDispatch.h

=) vtkArrayDispatch.txx
) vtkArrayDispatchArrayList.h.in

=) vtkArrayExtents.cxx

vtkArrayExtents.h

) vtkArrayExtentsList.cxx

vtkArrayExtentsList.h

clang-format: reformat using clang-format-8
Made more array APIs const

clang-format: reformat using clang-format-8
Made more array APIs const

Made GetActualMemorySize const
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8
cmake: clean up the array dispatch list creation
clang-format: reformat using clang-format-8
clang-format: reformat using clang-format-8

clang-format: reformat using clang-format-8

clang-format: reformat using clang-format-8

WKitware

O I I SIS I I I I I IO Y
What is a Build System?

A build system manages all of the source
files and the complicated
interdependencies for a project and turns

them into hopefully useful programs and
libraries.

I Kitware

ey ey xS XXX F I IS S AT
What is CMake?

 CMake is the cross-platform, open-source build system that lets you use
the native development tools you love the most.

* It’s a build system generator

* |t takes plain text files as input that describe your project and produces
project files or make files for use with a wide variety of native
development tools.

* Family of Software Development Tools
— Build = CMake Test = CTest/CDash Package = CPack

I Kitware

How CMake Changes The Way We Build C++

* Boost aims to give C++ a set of useful libraries like
Java, Python, and C#

* CMake aims to give C++ compile portability like the
compile once and run everywhere of Java, Python, and
CH
— Same build tool and files for all platforms

— Easy to mix both large and small libraries

Where did CMake come from?

S. Department of Health & Human Services

NIH U.S. National Library of Medicine

PRODUCTS AND SERVICES ~ RESOURCES FOR YOU ~

Visible Human Project Applications | Sources | Projects |

Home > Visible Human Home

The Visible Human Project

Overview

The NLM Visible Human Project has created publicly-available complete, anatomical
of a human male body and a human female body. Specifically, the VHP provides a pu
cryosection, CT, and MRI images obtained from one male cadaver and one female ce
released in 1994 and the Visible Woman in 1995.

The data sets were designed to serve as (1) a reference for the study of human anat
imaging algorithms, and (3) a test bed and model for the construction of network-ac:
have been applied to a wide range of educational, diagnostic, treatment planning, viri
industrial uses. About 4,000 licensees from 66 countries were authorized to access 1
required to access the VHP datasets.

Download the VHP image data from the dataset
View sample images from the dataset

NLM thanks the man and the woman who each willed their body to science, thereby

C IR BT T 957 € O RIS TG B Pt Pomont 16 Uakas SV I T R | It U

e N

Search NLM n

EXPLORE NLM ~

GRANTS AND FUNDING ~

National Library of Medicine Query Syntax
Lister Hill National Center for e ﬁ
Biomedical Communications

Home > Publications/Tools > Software: Insight Toolkit (ITK): Software for Image Segmentation and Registration.

Software: Insight Toolkit (ITK): Software for Image Segmentation and Registration.

& Printer-friendly version
Lowekamp B, Yoo TS

Abstract:

The Insight Toolkit (ITK) is an open-source software toolkit for performing regi: i)and (partitioning) of biomedical image data. It was
developed under contract to NLM by three commercial partners (Kitware, GE Corporate R&D, and Insightful) and three academic partners (UNC Chapel Hill,
University of Utah, and University of Pennsylvania). ITK supports NLM's Visible Human Project®.

Download ITK software: http:// itk.org/ITK/resource ftware.html @

Download SimpleITK software: http:// kitware.com/news/home/browse/ITK?2013 02 18&SimplelTK+0.6.1+is+Now+Available+for+D load%21 &

Learn more: mp.//nk.argﬂ

Lowekamp B, Yoo TS. Software: Insight Toolkit (ITK): Software for Image Segmentation and Registration.

Department of Health and Human Services
National Institutes of Health
U.S. National Library of Medicine

“USA.gov

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
8600 Rockville Pike, Bethesda, MD 20894
301-496-4441

NIH...Turning Discovery Into Health

Copyright| Privacy| Accessibility | Freedom of Information Act
Viewers and Players | Contact Us

Page Last Updated: 18 July 2018 ’ re
v S, ST R T Tt s A

Where did CMake come from?

e Kitware was the lead engineering team for
the Insight Segmentation and Registration 7 ‘
Toolkit (ITK) http://www.itk.org R,

Volemme Appearsace Presets

* Funded by National Library of Medicine

(NLM): part of the Visible Human Project
— Data CT/MR/Slice 1994/1995
— Code (ITK) 1999

http://www.itk.org

ettt " .. eee
CMake: History

* Other available tools were insufficient: pcmaker (vtk3.2), autoconf,
Apache ANT, gmake (Qt), JAM

* CMake provides the combination of native build tool use and platform
introspection that none of the others provide.

* (CMake Release-1-0 branch created in 2001
e CMake 2.8 released in November, 2009
e CMake 3.0 released June, 2014

e CMake 3.14 released March, 2019
 CMake 3.17 released March, 2020

I Kitware

CMake has high adoption

5 million CMake downloads
in 2019. 13809 downloads
per day, or a daily rate of
307.3GiB, and yearly over

The Qt Company Decides To Deprecate The Qbs Build System,
Will Focus On CMake & QMake

Written by Michael Larabel in Qt on 29 October 2018 at 08:23 AM EDT. 62 Comments
While Qt's Qbs build system was once planned as the default build system for Qt6 and

shaping up to be the de facto successor to QMake, there is a change of course with The
Qt Company now announcing they are deprecating this custom build system.

In recent months Qbs for Qt 6 began looking less certain and now The Qt Company has
announced they are going to deprecate Qbs. From talking with their customers, they
decided to focus on QMake and CMake.

IETi] CMake, CTest, and CDash at Netflix

Posted in CMake. Viewed 5489 times.

10TiB

Wity

SE

At the Core Technologies team at Netflix, we develop the application framework and streaming

N E ‘I‘ F l | x engine used by millions of consumer electronics devices, game consoles, tablets, and phones. With

such a diverse array of devices and platforms, we need to make sure our code is lightweight,
standards compliant, and portable. As we also produce the SDK that is used by pariners to port

Netflix to their devices, we need to make sure that it builds and runs well across many versions of WKitwal‘e

the C++ compiler and standard C libraries.

Jetbrains IDE- CMake is the most
oopular build tool at 42%.

Which project models or build systems do you regularly use?

Last year CMake beat Visual Studio
project to become the most popular
project model / build system used for
C++ development.

lts share has since added 5 percentage
points and reached 42%.

» Job openings requiring CMake experience, March, 2019 Indeed.com, 464 jobs,
at Tesla Motors, DCS Corp, Mindsource, Quanergy, ...LinkedIn.com, 486 jobs, at
Samsung, Johnson Controls, Apple, Uber, Toyota, Microsoft ...)))’(Kitware

O I I SIS I I I I I IO Y
Updated CMake Tutorial

Guides

« CMake Tutorial
o User Interaction Guide
e Using Dependencies Guide

Release Notes

« CMake Release Notes

A new series of guides provided with each CMake
release to help with learning and using CMake.

Fully-tested source code embedded in HTML docs
W Kitware

utsource your build to the CMake
developers

Typical Project without CMake (curl)

* A build system

that just works

* A build system

that is easy to use
cross platform

Sls

CHANGES RELEASE-NOTES curl-config.in missing

CMake acinclude.m4 curl-style.el mbkinstalldirs
CMakelists.txt aclocal.m4 depcomp notes

build docs notes™

COPYING buildconf include packages

Cvs buildconf.bat install-sh reconf

Changelog compile lib sample.emacs

Makefile config.guess libcurl.pc.in src

Makefile.am config.sub Itmain.sh tests

Makefile.in configure m4 vcébeurl.dsw

README configure.ac maketgz

Sls src/

CMakelists.txt Makefile.riscos curlsrc.dsp hugehelp.h version.h
Cvs Makefile.ve6 curlsrc.dsw macos writeenv.c
Makefile.Watcom Makefile.ve8 curlutil.c main.c writeenv.h

Makefile.am config-amigaos.h curlutil.h makefile.amiga writeout.c
Makefile.b32 config-mac.h getpass.c makefile.dj writeout.h
Makefile.in config-riscos.h getpass.h mkhelp.pl

Makefile.inc config-win32.h homedir.c setup.h

Makefile.m32 config.h.in homedir.h urlglob.c
Makefile.netware curl.rc hugehelp.c urlglob.h

\))((Kitware

ettt " .. eee
CMake: Bridging C++ gaps

e Open-source cross-platform build manager using native tools
— Visual Studio 6, 2003, 2005, 2008, 2010, 2012, 2013, 2015, 2017, 2019
— Borland make, Nmake, Unix make, MSYS make, MinGW make

— Ninja
— Xcode
* IDE Support
Code::Blocks KDevelop
— Codelite Kate
— Clion Sublime Text
— Eclipse Visual Studio Code

— Emacs and Vim syntax files can be found on the CMake Download page

I Kitware

ettt " .. eee
CMake: Bridging C++ gaps

* Operating Systems:

— HPUX, IRIX, Linux, MacOS, Windows, QNX, SunOS, and others
* Allows for platform inspection

— Programs

— Libraries and Header files

— Packages

— Determine hardware specifics like byte order
 Compiler Language Level Support

— C, C++, ObjC, ObjC++, CSharp, CUDA, Fortran, Swift

I Kitware

ettt " .. eee
CMake: Bridging C++ gaps

e Support for complex custom commands such as:
— Qt’s moc, VTK’'s wrapping

 Static, shared, object, and module library support

— including versions .so support
* Single input format for all platforms
* Create configured .h files

I Kitware

ettt " .. eee
CMake: Bridging C++ gaps

* Automatic dependency generation (C, C++, CUDA,
Fortran)

— build a target in some directory, and everything this
target depends on will be up-to-date

e Automatic re-execution of cmake at build time if
any cmake input file has changed

e Parallel builds

e User defined build directory
I itware

ettt " .. eee
CMake: Bridging C++ gaps

* Color and progress output for make
* Graphviz output for visualizing dependency trees
* Full cross platform install() system

 Compute link depend information, and chaining of
dependent libraries

* make help, make foo.0, make foo.i, make foo.s

I Kitware

ettt " .. eee
CMake: Bridging C++ gaps

* Advanced RPATH handling

— Support for chrpath, i.e. changing the RPATH without
need to actually link again

* Create OSX library frameworks and application
bundles

* Extensive test suite and nightly builds/test on
many platforms

e Supports cross compilation
V¢ kitware

eI XN NN I I I IS X
Learning CMake

For help or more information see:
— Professional CMake by Craig Scott

— Discourse forum
e https://discourse.cmake.or

— Documentation
e https://www.cmake.org/cmake/help/latest/

— Tutorial
o https://cmake.org/cmake/help/latest/guide/tutorial/index.html

WKitware

https://discourse.cmake.org/
https://www.cmake.org/cmake/help/latest/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

e cmake-gui (the Qt gui)

Running CMake

 ccmake (the terminal cli)

* cmake (non-interactive command line)

Make/build

06

Where s the source code: /Users /robert/Work/CMake/src

Where to build the binaries: |/Users/robert/Work/CMake/build

Search: ||

Name
BUILD_CursesDialog
BUILD_QtDialog

BUILD_TESTING
BZIP2_INCLUDE_DIR
CMAKE_BUILD_CURL_SHARED
CMAKE_BUILD_TYPE
CMAKE_INSTALL_PREFIX
CMAKE_OSX_ARCHITECTURES
CMAKE_OSX_DEPLOYMENT_TARGET
CMAKE_OSX_SYSROOT
CMAKE_TEST_GENERATOR
CMAKE_TEST_MAKEPROGRAM
CMAKE_USE_SYSTEM_BZIP2
CMAKE_USE_SYSTEM_CURL
CMAKE_USE_SYSTEM_EXPAT
CMAKE_USE_SYSTEM_LIBARCHIVE
CURSES_CURSES_H_PATH
CURSES_FORM_LIBRARY
‘CURSES_HAVE_CURSES_H
CURSES_HAVE_NCURSES_CURSES_H
CURSES_HAVE_NCURSES_H
CURSES HAVE NCIIRSES NCUIRSES H

Grouped
Valve

o

v

v
Jusr/include

RelWithDeblnfo
Jusr/local

108

Advanced | g Add Entry

Browse Source...

Browse Build...

Remove Entry

Jlatform)/De.

Just/include
Juse/liblibform.dylib
Jusr/include/curses.h

CURSES_HAVE_NCURSES_CURSES_H-NOTFOUND.

Jusr/include/ncurses.h

CURSFS HAVE NCIIRSES NCUIRSFS H-NOTEOIUND.

Press Configure to update and display new values in red, then press Generate to generate selected build files.

Configure Generate Current Generator: Ninja

Using system-installed CURL
Using system-installed ZLIB
Configuring dor
Generating done

BUILD_Cur
BUILD_QtDialog
BUILD_TESTING
CMAKE_BUILD_TYPE
CMAKE_CXX_COMPILER_LAUNCHER
CMAKE_C_COMPILER_LAUNCHER
CMAKE_INSTALL_PREFIX
CMAKE_USE_SYSTEMN_BZIP2
CMAKE_USE_SYSTEM_CURL
CMAKE_USE_SYSTEM_EXPAT
CMAKE_USE_SYSTEM_FORM
CMAKE_USE_SYSTEM_JSONCPP
CMAKE_USE_SYSTEM_LIBARCHIVE
CMAKE_USE_SYSTEM_LIBLZMA
CMAKE_USE_SYSTEM_LIBRHASH
CMAKE_USE_SYSTEMN_LIBUV
CMAKE_USE_SYSTEM_NGHTTP2
CMAKE_USE_SYSTEM_ZLIB
CMAKE_USE_SYSTEM_ZSTD
CMake_BUILD_LTO
CMake_RUN_CLANG_TIDY
CMake_RUN_IWYU
CMake_TEST_CUDA
CPACK_ENABLE_FREEBSD_PKG
CURL_BROTLT
DPKG_EXECUTABLE
FAKEROOT_EXECUTABLE
GUNZIP_EXECUTABLE
NSIS_MAKENSIS_EXECUTABLE
NUGET_EXECUTABLE
QT_QMAKE_EXECUTABLE
Qt5Core_DIR
Qt56ui_DIR
QtSWidgets_DIR
READELF_EXECUTABLE
RPMBUILD_EXECUTABLE
RPM_EXECUTABLE

ccache
ccache

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
OFF
OFF

Page 1 of 2

[1] Show log output
[h] Help

[c] Configure
[q] Quit without generating
[t] Toggle advanced mode (currently off)

Cke Workflow

Step O - Run CMake
Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2 Exercise!

module swap craype-mic-knl craype-broadwell

Run cmake —--version fromthe command line
Run ccmake or cmake-gui

‘

CMake reads User edits cache e
CMakeCache.txt variables, if User tells make
file, if present ‘necessary to configure

ettt 1 . . eee
Basic CMake Syntax

The CMake language consists of:
Commands, Variables, and Comments

cmake_minimum_required(VERSION 3.8)
project(main)

set (CMAKE_CXX_STANDARD 11)

set (CMAKE_CXX_STANDARD REQUIRED True)

add_subdirectory(MathFunctions)
add_executable(main main.cxx)
target _link libraries(main MathFunctions)

I Kitware

ettt " .. eee
Basic CMake Syntax: examples

Commands may span multiple lines, but the command

name and the opening parenthesis must be on the same
line

set(sources
CellSet.cxx
CellSetExplicit.cxx
CellSetStructured.cxx

CoordinateSystem.cxx
Field.cxx
ImplicitFunction.cxx

I Kitware

ey ey xS XXX F I IS S AT
CMake Commands

e Commands are documented online and within cmake itself:

— https://cmake.org/cmake/help/latest/manual/cmake-commands
.7.html

* Commands may be uppercase or lowercase.

(main main.cxx)

(main main.cxx)

Prefer Lowercase
Historical note: commands used to be all uppercase, earning
CMake the affectionate nickname “SCREAMMake” Thankfully,

those days are over! \)X(Kitware

https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html
https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html

Attt SSSENIR 1 ocaae
CMake Commands (Arguments)

* Command arguments are space separated
* Arguments are case sensitive

* Quoted arguments
— A guoted argument is always exactly one value.

— An unquoted argument splits on semicolons and

removes empty arguments.
ICKitware

ey ey xS XXX F I IS S AT
CMake Variables

 Variable names are case sensitive

(LEAF valueA)
(leaf valueB)

Creates two distinct variables named “LEAF” and “leaf”

e Names can only contain alpha-numerics and underscores
— [A-Za-z0-9]

e CMake uses many variables that begin with “CMAKE_" — avoid
this naming convention (and establish your own) for CMake

variables specific to your project

I Kitware

ey ey xS XXX F I IS S AT
CMake Variables

CMake variables are strings

set(name myexe)

set(srcs srcl.cxx src2.cxx src3.cxx)
set(srcs)

I Kitware

ey ey xS XXX F I IS S AT
CMake Variables

Special syntax for setting environment

use ENV and curly braces {}
({ } <value>...)

I Kitware

ey ey xS XXX F I IS S AT
CMake Variables

Variable dereferencing syntax: ${VAR}
message (STATUS CMAKE_SOURCE_DIR}'")

set(my_dir CMAKE_CURRENT_SOURCE_DIR)
message(STATUS)

Environment Variable dereferencing syntax: $ENV{VAR}
set(my_path)

message(STATUS

I Kitware

ey ey xS XXX F I IS S AT
CMake Variables

Escaping
* \ isthe escape character used in CMake

* You can also use long brackets

set(classic_str
set(long _brackets

message(STATUS ${classic_str})
message(STATUS ${long brackets})

Both of these print: * here be "dragons" *
Y Kitware

ettt " .. eee
Configuring Header Files

e Can put build parameters into a header file
instead of passing them on the command line

configure file(
PROJECT_SOURCE_DIR}/projectConfig.h.in

PROJECT_BINARY_DIR}/projectConfig.h

I Kitware

ettt " .. eee
Configuring Header Files

e ##idefine VARIABLE @VARIABLE@

// C++ source file
VARIABLE

VARIABLE
// will be hit when the CMake variable doesn't exist

I Kitware

ettt " .. eee
Configuring Header Files

e #cmakedefine VARIABLE

// C++ source file

VARIABLE

// will not-be hit when the CMake
// variable doesn't exist

I Kitware

Requiring a CMake Version

* First line of the top level CMakelists.txt should always
be cmake minimum required

(3.9)

(Example C CXX CUDA)

* Allows projects to require a given version of CMake
* Allows CMake to be backwards compatible

I Kitware

ettt " .. eee
project() command

* Necessary for the top-level CMake. Should be set after the
cmake minimum requiredcommand

3.9)

C CXX CUDA)

* VERSION: sets the PROJECT_VERSION_MAJOR/MINOR/TWEAK
* DESCRIPTION: sets the PROJECT_DESCRIPTION variable

 LANGUAGES:
— C, CXX, FORTRAN, CSharp, CUDA, ASM
— Defaultis C and CXX if not defined

I Kitware

O I I SIS I I I I I IO Y
CMake Language Standards

 CMake offers a few different ways to specify
which version of a language should be used.

(11)

(

[50%] Building CXX object main.cxx.o
/usr/bin/c++ -std=gnu++11l -0 main.cxx.o -C main.cxx

e CMAKE CXX_ EXTENSIONS controls if

compiler specific extensions are enabled _
I kitware

ey ey xS XXX F I IS S AT
CMake 3.8: meta-features

* Request compiler modes for specific language standard levels
— cxx_std 11, cxx_std 14, cxx_std 17
— Works with Clang, GCC, MSVC, Intel, Cray, PGI, XL

* These should be used instead of features like cxx_auto_type

target compile features(particles cxx_std 17)

[50%] Building CXX object CMakeFiles/particles.dir/randomize.cpp.o
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/c++ -g

-std=gnu++1z -0 CMakeFiles/particles.dir/randomize.cpp.0 -c /Users/robert/Work/cmake_tutorial/paral
1e1_forall/posts/cmake/randomize.cpp

[100%] Linking C _
I Kitware

Step 0.5 - CMake and Compiler Selection
Cooley: /ﬂk‘\

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2 Exercise!

module swap craype-mic-knl craype-broadwell

* CMake caches the compiler for a build directory on the first invocation.
* CMake compiler detection has the following preference
— env variables (CC, CXX)
— cc and cxx path entries
— gcc and g++ path entries
* Try the following on cooley / theta
— soft add +gcc-7.1.0 [cooley only]
— cmake -S Step0 -B StepOCXXBuildDir .
— CXX=g++ cmake -S StepO0 -B StepOGCCBuildDir)))/(Kltware

Step 0.5 - CMake and Compiler Selection

rmaynard@thetalogin6:~/alcf_cmake> cmake -S ./tutorial/Step® -B
-— The C compiler tddentification is Intel 19.0.5.20190815

- The CXX compiler tidentification is Intel 19.0.5.20190815

-— Cray Programming Environment 2.6.1 C

rmaynard@thetalogin6:~/alcf_cmake> CXX=g++ cmake -S ./tutorial/Step@ -B
-— The C compiler identification is Intel 19.0.5.20190815

-— The CXX compiler identification is GNU 4.8.5

-— Cray Programming Environment 2.6.1 C

. /build_theta/s0

. /build_theta/s0Ogcc

I Kitware

Step 1 - Configure a File and C++11 Controls/\
Cooley: . &

soft add +cmake-3.17.3 ﬂ'k
Theta:

module load cmake/3.16.2 Exercise!

module swap craype-mic-knl craype-broadwell

* Follow the instructions in Step1l

* Run cmake or cmake-gui to configure the project and then build it with your
chosen build tool

e cdto the directory where Tutorial was built (likely the make directory or a
Debug or Release build configuration subdirectory) and run these commands:

— Tutorial 4294967296
— Tutorial 10

— Tutorial)))((Kitware

O S S S S IS S I I S A e Y
Flow control (if)

CMake i f command
supports a wide
range of expressions

(my_var)

set(result
()

(my_var)

(my_var

my_var2)
my_var2)
regexp)

(my_var
(my_var
(target)
(file)
(my_var
(my_ver

my_var2)

I Kitware

O S S S S IS S I I S A e Y
Flow control (if): FALSE values

* The following values are all equivalent to “FALSE” in
a CMake if command:
— (the empty string)
— OFF
-0
— NO
— FALSE
— N
— “NOTFOUND” exactly or ends in “-~-NOTFOUND”
— IGNORE

\))((Kitware

Flow control: loops

foreach(F IN ITEMS a b) while(MY_VAR)
message() message(${MY_VAR})
endforeach() set(MY_VAR FALSE)
endwhile()
set(items a b ¢)
foreach(F IN LISTS
message ()
endforeach()

I kitware

At SSSSS NN (. oae
add subdirectory and variable scope

* The add_subdirectory command allows a project
to be separated into directories

e Variable values are inherited by CMakelLists.txt
files in sub directories
— TopDir

set(MY_VAR 1)
add_subdirectory(Dirl)

— TopDir/Dirl

Dirl/CMakelLists.txt -> MY_VAR is 1

I Kitware

Function

function(showcase_args myarg)
message/()
message() myarg: items
message(ARGVO: items
message (contents of myarg: a;b;c
message (extra arguments:

endfunction() # of arguments: 1

set(items a b c)
showcase_args(items)

e ARGC — number of arguments passed

e ARGVO, ARGV1], ... - actual parameters passed in

e ARGV —list of all arguments

e ARGN - list of all arguments beyond the last formal parameter

I Kitware

Function

* Dynamically scoped, so any variables set are local to the

function
* Use set(...PARENT_SCOPE) to set a variable in the calling

function(showcase_args myarg)
set(d e f PARENT_SCOPE)
endfunction()
set(items a b ¢)
showcase_args(items)
message(

items: a;b;c;d;e;f \))(Kitware

Macro

* Not dynamically scoped, so all variables leak into
the calling scope

macro(showcase_args argl)

set (} def)
endmacro()

set(items a b ¢)
showcase args(items)
message(

items: a;b;c;d;e;f
\))((Kitware

CMake Common Command Review

cmake _minimum_required(VERSION 3.9)
project (Example LANGUAGES C CXX)

set (CMAKE_CXX_STANDARD 11)

set (CMAKE_CXX_STANDARD REQUIRED TRUE)

set(srcs
Field.cxx
CellSet.cxx
CellSetExplicit.cxx
ImplicitFunctions.cxx)
add_library(simplelib)
add_executable(example main.cxx)
target link libraries(example

PRIVATE simplelib) .
add_subdirectory(tests) \)KKItWBI'e

ey ey xS XXX F I IS S AT
CMake Commands

* All commands
— cmake --help-command-list
— cmake --help-command command_name

— https://cmake.org/cmake/help/latest/manual/cm
ake-commands.7.html

\))((Kitware

https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html
https://cmake.org/cmake/help/v3.8/manual/cmake-commands.7.html

ey ey xS XXX F I IS S AT
CMakeCache.txt

» Stores optional choices and provides a project global variable repository
* Variables are kept from run to run
* Located in the top directory of the build tree
e Aset of entries like this:
— KEY:TYPE=VALUE

* Valid types:
— BOOL
— STRING
— PATH
— FILEPATH
— INTERNAL
(these are only used by cmake-gui and ccmake to display the appropriate type

of edit widget))))((Kitware

A CMake 3.15.0 - C:/Users/betsy.mcphail/development/CMake_Tutorial_build

File Tools Options Help

Where is the source code: |C:/User : i/ make

CMake Cache

‘ Browse Source...

Where to build the binaries: \C:/Users/betsy.mcpha|I/deveIopment/CMake_Tutomal_bulld

v ‘ Browse Build...

Search: [Grouped [] Advanced
Name Value . .
E&I:EETEZEI’:\‘IgURATION_TVPES bug;ReIease‘,MinSizeRe!;ReIWith / / S p h l n X DO C u me n t a t 1 O n B u l 1 d e P

CMAKE_INSTALL_PREFIX
CMAKE_USE_SYSTEM_BZIP2
CMAKE_USE_SYSTEM_CURL
CMAKE_USE_SYSTEM_EXPAT
CMAKE_USE_SYSTEM_FORM
CMAKE_USE_SYSTEM_JSONCPP
CMAKE_USE_SYSTEM_LIBARCHIVE
CMAKE_USE_SYSTEM_LIBLZMA
CMAKE_USE_SYSTEM_LIBRHASH
CMAKE_USE_SYSTEM_LIBUV
CMAKE_USE_SYSTEM_ZLIB
CMAKE_USE_SYSTEM_ZSTD
CMake_BUILD_LTO
CMake_MSVC_PARALLEL
CMake_RUN_CLANG_TIDY
CMake_RUN_IWYU
CPACK_ENABLE_FREEBSD_PKG
CURL_BROTLI
CURL_STATIC_CRT
CURL_WINDOWS_SSPI
DPKG_EXECUTABLE
ENABLE_INET_PTON
FAKEROOT_EXECUTABLE

JNI_H
NSIS_MAKENSIS_EXECUTABLE
NUGET_EXECUTABLE
QT_QMAKE_EXECUTABLE
Qt5Core_DIR

Qt5Widgets_DIR
READELF_EXECUTABLE
RPMBUILD EXECUTABLE
RPM_EXECUTABLE
SPHINX_EXECUTABLE

SPHINX_HTML
COLINIY INEN
<

C:/Program Files/CMake

(sphinx-doc.org)
SPHINX EXECUTABLE:FILEPATH=C:/Python27/Scripts
/sphinx-build.exe

//Build html help with Sphinx
SPHINX HTML :BOOL=ON

KOOO0O0Og 000000000000

DPKG_EXECUTABLE-NOTFOUND

FAKEROOT_EXECUTABLE-NOTFO!
C:/Program Files/)ava/jdk1.8.0_91/include/jni.h
NSIS_MAKENSIS_EXECUTABLE-NOTFOUND

NUGET_EXECUTABLE-NOTFOUND

NOTFOUND

Qt5Core_DIR-NOTFOUND

Qt5Widgets_DIR-NOTFOUND

READELF_EXECUTABLE-NOTFOUND

RPMBUILD EXECUTABLE-NOTEQUND

RPM_EXECUTABLE-NOTFOUND

C:/Python27/Scripts/sphinx-build.exe

v

3 L]
Press Configure to update and display new values in red, then press Generate to generate selected build files. ,t Wa‘ e

Configure Generate Open Project Current Generator: Visual Studio 15 2017 Win64

oo x s s X S XX I I I I S e
Variables and the Cache

* Use option command or set command
with CACHE keyword

0\

oo x s s X S XX I I I I S e
Variables and the Cache

Dereferences look first for a local variable, then
in the cache if there is no local definition for a
variable

Local variables hide cache variables

I Kitware

oo x s s X S XX I I I I S e
Variables and the Cache

Which one is the better option?

set (CMAKE_CXX_FLAGS)

set (CMAKE_CXX_FLAGS)

set (CMAKE_CXX_FLAGS CACHE STRING "" FORCE)

I Kitware

Variables and the Cache

set (CMAKE_CXX_FLAGS)
Clears any users CXX FLAGS! :(

set (CMAKE_CXX_FLAGS

set (CMAKE_CXX_FLAGS CACHE STRING "" FORCE)
Will keep appending each time you reconfigure
the project

I Kitware

T T XSS I I I I I I I Y
mark _as advanced

* Advanced variables are not displayed in the
cache editors by default

e Allows for complicated, seldom changed
options to be hidden from users

* Cache variables of the INTERNAL type are

never shown in cache editors _
ICKitware

ettt " .. eee
CMake Special Variables

* cmake --help-variables or online docs
e User settable variables
— BUILD_SHARED_LIBS
— CMAKE_INSTALL_PREFIX
— CMAKE_CXX_FLAGS / CMAKE_<LANG>_FLAGS

* CMake pre-defined variables (should not be set by user code)
— WIN32, UNIX, APPLE, CMAKE_VERSION

— CMAKE_SOURCE_DIR, CMAKE_BINARY_DIR
— PROJECT_NAME

— PROJECT SOURCE_DIR, PROJECT BINARY DIR
ICKitware

O I I SIS I I I I I IO Y
Passing options to the compiler

add _compile definitions(-Drevision=2902)

target_compile definitions(Tutorial revision=2902)
target _compile options(Tutorial -march=native)

 alternative to configuring header files

* targets, directories, and source files have the properties:
COMPILE OPTIONS COMPILE_DEFINITIONS

Which can be also be used instead of the target commands.

I Kitware

ettt " .. eee
Build Configurations

* With Makefile generators(Makefile, Ninja):
— CMAKE_BUILD _TYPE:STRING=Release

— known values are: Debug, Release, MinSizeRel,
RelWithDeblInfo

* To build multiple configurations with a Makefile

generator, use multiple build trees
I kitware

ettt " .. eee
Build Configurations

e With multi-config generators (Visual Studio / Xcode):
— CMAKE_CONFIGURATION_TYPES

= |ist of valid values for config types
— All binaries go into config subdirectory

${CMAKE_CURRENT_BINARY DIR}/bin/Debug/
${CMAKE_CURRENT_BINARY DIR}/bin/Release/

I Kitware

ettt " .. eee
Build Configurations

* To set per configuration information:
— per target use $<CONFIG>

target_compile definitions(Tutorial

$<$<CONFIG:DEBUG>: ENABLE_DEBUG_CHECKS>

)

— globally use CMAKE _CXX_FLAGS_<CONFIG>

ettt " .. eee
Build Configurations

* To get the current configuration type from
multi-conf:

— Generate Time:
« S<CONFIG>

— Build-time (deprecated):
- ${CMAKE_CFG_INTDIR}

— In source file
« CMAKE_INTDIR which is defined automatically

\))((Kitware

ADDING LIBRARIES

WKitware

ey ey xS XXX F I IS S AT
CMake Libraries

* Use the add library command to build libraries.

option(BUILD SHARED LIBS

add library(root root.cxx)
add library(trunk STATIC trunk.cxx)
add library(leaf SHARED leaf.cxx)

e STATIC => .a or .lib archive
* SHARED => .so, .dylib, or .dll dynamic library ¢ kitware

ey ey xS XXX F I IS S AT
CMake Libraries

option(BUILD SHARED LIBS

add library(root root.cxx)
add _library(trunk STATIC trunk.cxx)
add library(leaf SHARED leaf.cxx)

 SHARED will work on Unix where supported.

 SHARED on Windows requires code changes or *.def
files to export symbols. CMake makes this easier.

I Kitware

ettt " .. eee
Linking to Libraries

 target link libraries is how you
specify what libraries a target requires.

add library(root SHARED root.cxx)
add library(trunk SHARED trunk.cxx)
add library(leaf SHARED leaf.cxx)

target link libraries(trunk root)
target link libraries(leaf trunk)

I Kitware

ettt " .. eee
Linking to Libraries

* By default target _link librariesis
transitive

[100%] Linking CXX shared library libleaf.so
/usr/bin/c++ -fPIC -shared -W1,-soname,libleaf.so

-0 libleaf.so leaf.cxx.o libtrunk.so libroot.so
[100%] Built target leaf

I Kitware

MODULE Libraries

* Very similar to SHARED libraries but are not
linked into other targets but can be loaded
dynamically at runtime using dlopen-like

functionality

(parasite eat_leaf.cxx)

I Kitware

OBJECT Libraries

* Generate the object files but does not
construct an archive or library

— Can
— Can
— Can
— Can

oe installed [3.9]
be exported/imported [3.9]
oe consumed with target_link libraries [3.12]

nave transitive information [3.12]

I Kitware

OBJECT Libraries

add library(root OBJECT root.cxx)
add _library(trunk OBJECT trunk.cxx)
add library(leaf SHARED leaf.cxx)
target link libraries(leaf root trunk)

[100%] Linking CXX shared library libleaf.so
/usr/bin/c++ -fPIC -shared -W1l,-soname,libleaf.so

-0 libleaf.so leaf.cxx.o0 root.cxx.o trunk.cxx.o

I kitware

OBJECT Libraries

add library(root OBJECT root.cxx)
add _library(trunk OBJECT trunk.cxx)
add library(leaf SHARED

leaf.cxx

[100%] Linking CXX shared library libleaf.so
/usr/bin/c++ -fPIC -shared -W1l,-soname,libleaf.so

-0 libleaf.so leaf.cxx.o0 root.cxx.o trunk.cxx.o

I Kitware

ey ey xS XXX F I IS S AT
OBJECT Libraries Caveats

 CMake 3.9 added ability for OBJECT libraries
to be:

— Installed / Exported / Imported

— S<TARGET_OBIJECTS> to be used in more
generator expression locations

I Kitware

ey ey xS XXX F I IS S AT
OBJECT Libraries Caveats

 CMake 3.12 added ability to link to OBJECT
libraries:
— Will behave like any other library for propagation

— Anything that links to an OBJECT library will have
the objects embedded into it.

I Kitware

Step 2- Adding a library

Cooley:

soft add +cmake-3.17.3
Theta:

module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

* Follow the directions in Step2

 Run cmake or cmake-gui to configure the project and then
build it with your chosen build tool

* Run the built Tutorial executable
* Which function gives better results,
— Stepl’s sqgrt or Step2’s mysqrt?

AR

Exercise!))K Kitware

87

Modern CMake

USAGE REQUIREMENTS

WKitware

Before Usage Requirements

— include_directories — | l '
— compile definitions
— compile options

* Consumers have to know: I_'l l“l l
T pocs the cependency generate Library B [l Library A

— Does the dependency use any
new external package

* Before Usage Requirements existed
we used directory scoped commands
such as:

Executable

At SSSSS NN (. oae
Modern CMake / Usage Requirements

* Modern CMake goal is to have each target
fully describe how to properly use it

* No difference between using internal and
external generated targets

I Kitware

Modern CMake

n Root
1 1

‘ 1 1 1
. . Library A 8 Library B
Library B i Library A

g Library B gl Library A
Excoutabich s
| leraryA V¢ kitware

O I I SIS I I I I I IO Y
Usage Requirements

 target link libraries isthe foundation for
usage requirements

* This foundation is formed by
— PUBLIC
— PRIVATE

— INTERFACE

I Kitware

O I I SIS I I I I I IO Y
Usage Requirements

target link libraries(trunk root)

target link libraries(leaf trunk)

/usr/bin/c++ -fPIC -shared -W1,-soname,libleaf.so
-0 libleaf.so leaf.cxx.o libtrunk.so libroot.so

target link libraries(trunk

target link libraries(leaf

/usr/bin/c++ -fPIC -shared -W1,-soname,libleaf.so
-0 libleaf.so leaf.cxx.o libtrunk.so

I Kitware

eI XN NN I I I IS X
TLL (target link libraries)

* TLL can propagate dependencies when using:
— target include_directories
— target compile definitions
— target compile options
— target sources
- target link options

I Kitware

T T XSS I I I I I I I Y
target include _directories

* Propagates include directories

* Anything that links to leaf will automatically
have the zlib_dir on the include line

I Kitware

ettt SSR N eaae
target compile options

* Propagates compiler options

(trunk -march=native)

* Only trunk will be built optimized for the
current hardware. Anything that links to trunk
will not get this flag

I Kitware

X T IS S SR I I I S S
target compile definitions

* Propagates pre-processor definitions

* Root will have ROOT_VERSION defined and
anything that links to it will also

I Kitware

e XTSI I I I I IS XS
INTERFACE Libraries

* An INTERFACE library target does not directly
create build output, though it may have
properties set on it and it may be installed,
exported, and imported.

add library(root INTERFACE)

target compile features(root INTERFACE cxx_std 11)

I Kitware

Step 3 - Usage Requirements for Library

s o
Cooley: M
soft add +cmake-3.17.3

Th eta: Exercise!
module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

* Follow the directions in Step3 of the Tutorial

 Run cmake or cmake-gui to configure the project
and then build it with your chosen build tool

I Kitware

INSTALL RULES

WKitware

e Specify ru
e Can instal

Install Rules

es to run at install time
targets, files, or directories

* Provides default install locations

add library(leaf SHARED leaf.cxx)

install (TARGETS root trunk leaf parasite)

I Kitware

101

Install Targets

add library(leaf SHARED leaf.cxx)
install (TARGETS root trunk leaf parasite)

add library(leaf SHARED leaf.cxx)
install (TARGETS root trunk leaf parasite
ARCHIVE DESTINATION 1ib
LIBRARY DESTINATION 1ib
RUNTIME DESTINATION bin)

O I I SIS I I I I I IO Y
Install Targets

add library(leaf SHARED leaf.cxx)

install (TARGETS root trunk leaf parasite)

Target Type GNUInstallDirs Variable Built-in Default
RUNTIME ${CMAKE_INSTALL_BINDIR} bin
LIBRARY ${CMAKE_INSTALL_LIBDIR} lib
ARCHIVE ${CMAKE_INSTALL_LIBDIR} 1ib
PRIVATE_HEADER ${CMAKE_INSTALL_INCLUDEDIR} include
PUBLIC_HEADER ${CMAKE_INSTALL_INCLUDEDIR} include

I Kitware

103

Install Files

install (FILES
trunk.h
leaf.h
DESTINATION
${CMAKE INSTALL INCLUDEDIR}/tree

I Kitware

104

Install Files

add library(leaf SHARED leaf.cxx)
set target properties(leaft PROPERTIES
PUBLIC HEADER leaf.h)

install (TARGETS root trunk leaf parasite
PUBLIC HEADER DESTINATION
${CMAKE_INSTALL INCLUDEDIR}/tree

ettt " .. eee
Exporting Targets

* |nstall rules can generate imported targets

add_library(parasite STATIC eat leaf.cxx)
install(TARGETS parasite root trunk leaf
EXPORT tree-targets)

install (EXPORT tree-targets
DESTINATION lib/cmake/tree)

* |nstalls library and target import rules

— <prefix>/lib/libparasite.a
— <prefix>/1lib/cmake/tree/tree-targets.cmake

I Kitware

106

CTEST

\»‘(Kitware

ettt " .. eee
Testing with CMake

* Testing needs to be enabled by calling include(CTest) or
enable testing()

testname

exename argl arg2 ...

— Executable should return O for a test that passes

e ctest — an executable that is distributed with cmake that
can run tests in a project

I Kitware

108

ettt " .. eee
Running CTest

* Run ctest at the top of a binary directory to run all tests

$ ctest
Test project /tmp/example/bin
Start 1: casel

1/1 Test #1: CasS@l ..ttt eeeeeeeeeossssnssonns Passed 0.00 sec
Start 2: case2
2/2 Test #2: CAS@2 ittt e eeeeeeeesssssonnnnnns Passed 0.00 sec

100% tests passed, O tests failed out of 2

Total Test time (real) = 0.01 sec

I Kitware

Running CTest

-9 option allows you to run tests in parallel
-R option allows you to choose a test

-VV for more verbose output
--rerun-failed to repeat failed tests

ctest --help for more information
Y kitware

110

oo x s s X S XX I I I I S e
Test fixtures

e Attach setup and cleanup tasks to a set of
tests.
e Setup tests — “main” tests — cleanup tests

* |f any setup tests fail the “main” tests will not
be run.

 The cleanup tests are always executed, even
if some of the setup tests failed.

I Kitware

111

Test Fixtures example

add test(NAME myDBTest COMMAND testDb)

add test(NAME createDB COMMAND initDB)
add test(NAME setupUsers COMMAND userCreation)

add _test(NAME cleanupDB COMMAND deleteDB)
add test(NAME testsDone COMMAND emailResults)

I kitware

112

Test Fixtures example

set tests properties(setupUsers PROPERTIES
DEPENDS createDB)

set tests properties(createDB PROPERTIES
DB)

set tests properties(setupUsers PROPERTIES
DB)

set tests properties(cleanupDB PROPERTIES
DB)

set tests properties(myDBTest PROPERTIES
DB) Y kitware

113

GoogleTest integration
include(GoogleTest)

add executable(tests tests.cpp)
target link libraries(tests GTest::GTest)

e gtest discover tests: added in CMake 3.10.
— CMake asks the test executable to list its tests.
Finds new tests without rerunning CMake.

gtest discover tests(tests)

I Kitware

114

https://blog.kitware.com/dynamic-google-test-discovery-in-cmake-3-10/

GoogleTest integration
include(GoogleTest)

add executable(tests tests.cpp)
target link libraries(tests GTest::GTest)

 gtest add tests: use for CMake < 3.9.
— Scans source files to finds tests. New tests are
only discovered when CMake re-runs.

gtest add tests(TARGET tests)

I Kitware

115

https://blog.kitware.com/dynamic-google-test-discovery-in-cmake-3-10/

oo x s s X S XX I I I I S e
CTest and multi core tests

e \When launching tests that use multi cores it
is important to make sure you use the
following:

set tests properties(myTest PROPERTIES
PROCESSORS 4)

I Kitware

116

oo x s s X S XX I I I I S e
CTest and multi core tests

e PROCESSOR_AFFINITY - when supported ties
processes to specific processors

set tests properties(myTest PROPERTIES
PROCESSOR_AFFINITY ON
PROCESSORS 4)

I Kitware

117

oo x s s X S XX I I I I S e
Test Resource Allocation

* Tests specify the resources they need

e Users specify the resources available on the
machine

* CTest keeps track of available resources when
running tests in parallel

* New in CMake v3.16

I Kitware

118

https://cmake.org/cmake/help/latest/manual/ctest.1.html#resource-specification-file

oo x s s X S XX I I I I S e
Test Resource Allocation

* Tests using GPU
— Run tests serially — too slow
— Run tests in parallel — exhaust available
memory — spurious failures

* Tests dictate how much GPU memory they
use

 CTest can run tests in parallel without
exhausting GPU memory I Kitware

119

Test Resource Allocation

* CTest does not directly communicate with

GPUs
* |t keeps track of abstract resource types and

the number of “slots” available

I Kitware

oo x s s X S XX I I I I S e
Test Resource Allocation

* For tests, set RESOURCE_GROUPS property

(TEST MyTest PROPERTY

RESOURCE_GROUPS)

* For machines, define a Resource Specification
JSON file.

RESOURCE_SPEC_FILE

W Kitware

https://cmake.org/cmake/help/latest/manual/ctest.1.html#resource-specification-file
https://cmake.org/cmake/help/latest/manual/ctest.1.html#resource-specification-file

Step 4 - Installing and Testing

Follow the directions in Step4 of the CMake Tutorial

— Expect the ‘'make install’ to fail when on ANL hardware
Run cmake or cmake-gui to configure the project and then build it with
your chosen build tool
Build the “install” target (make install, or right click install and choose
“Build Project”) — verify that the installed Tutorial runs
cd to the binary directory and run

“ctest -N” and “ctest -VV” ® e

Exercise!))K Kitware

122

SYSTEM INTROSPECTION

WKitware

O I I SIS I I I I I IO Y
Using Find Modules

* One of CMake strengths is the
find package infrastructure

 CMake provides 150 find modules

— cmake --help-module-list

— https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

(PythonInterp)

(TBB)
I kitware

124

https://cmake.org/cmake/help/latest/manual/cmake-modules.7.html

Using Find Modules

 CMake supports each project having custom find modules via
CMAKE_MODULE PATH
— It is searched before using a module provided by CMake

(${ }/CMake)

robert robert 88470 Jun 26 08:31 FindMPI.cmake

robert robert 18962 May 14 15:15 FindOpenGL.cmake
robert robert 21991 May 14 15:15 FindOpenMP.cmake
robert robert 1318 May 14 15:15 FindPyexpander.cmake
=S e e robert robert 13011 Jun 3 15:31 FindTBB.cmake

125

i By i et i
SN
= @ T e
—IW=r==l==

o = =

O I I SIS I I I I I IO Y
Using Find Modules

* Modern approach: packages construct import
targets which combine necessary information into

a target.
e Classic CMake: when a package has been found it

will define the following:

— <NAME> FOUND
— <NAME>_INCLUDE_DIRS
— <NAME> LIBRARIES I Kitware

O I I SIS I I I I I IO Y
Using Config Modules

 find_package also supports config modules

* Config modules are generated by the CMake
export command

* Automatically generate import targets with all
information, removing the need for
consuming projects to write a find module

I Kitware

127

O I I SIS I I I I I IO Y
Using Find Modules

Our library “trunk™ needs PNG

find package(PNG REQUIRED)

add library(trunk SHARED trunk.cxx)

Preferred Modern CMake approach:
target link libraries(trunk PNG: : PNG)

Historical approach:

target link libraries(trunk
include_directories(trunk

ettt " .. eee
Writing find modules

* Exporting your targets is preferred when

possible.
* Only write a find module for a project you

cannot change.
* Full example here:

https://cmake.org/cmake/help/latest/manual/cmake-de
veloper.7.html#ta-sample-find-module

I Kitware

129

https://cmake.org/cmake/help/latest/manual/cmake-developer.7.html#a-sample-find-module
https://cmake.org/cmake/help/latest/manual/cmake-developer.7.html#a-sample-find-module

ettt " .. eee
Writing find modules

Find required files
find_path(MyLib_INCLUDE_DIR NAMES mylib.h)

find library(MyLib LIBRARY NAMES mylib)

Set version (if available)

set(MyLib_ VERSION)

I Kitware

130

Writing find modules

include(FindPackageHandleStandardArgs)
find package handle standard args(MyLib
FOUND_VAR MyLib_ FOUND
REQUIRED_VARS
MyLib LIBRARY
MyLib INCLUDE_DIR
VERSION_VAR MyLib VERSION)

I kitware

131

ettt " .. eee
FindPackageHandleStandardArgs

* Makes sure REQUIRED VARS are set

* Sets MyLib_FOUND

* Checks version if MyLib_VERSION is set and
and a version was passed to find_package()

* Prints status messages indicating if the
package was found.

I Kitware

ettt " .. eee
Writing find modules

Provide a way to use the found results:

variables (classic approach)
(MyLib_FOUND)
set(MyLib_LIBRARIES

set(MyLib INCLUDE_DIRS
()

I Kitware

133

Writing find modules

Provide a way to use the found results:
imported targets (new approach)

if(MyLib_FOUND TARGET MyLib: :MyLib)
add_library(MyLib::MyLib UNKNOWN IMPORTED)
set target properties(MyLib::MyLib PROPERTIES
IMPORTED LOCATION
INTERFACE_INCLUDE_DIRECTORIES

)
endif()

134

ettt " .. eee
Understanding Find Modules

Searches
* CMake’s find_package uses the following

pattern:
— <PackageName>_ROOT from cmake, then env [3.12]
— CMAKE_PREFIX_PATH from cmake

— <PackageName>_DIR from env
— CMAKE_PREFIX_PATH from env

— Any path listed in (PNG HINTS /opt/png/)

I Kitware

135

ettt " .. eee
Understanding Find Modules

Searches

— PATH from env
— paths found in the CMake User Package Registry

— System paths as defined in the toolchain/platform
* CMAKE_SYSTEM_PREFIX_PATH

— Any path listed in (PNG PATHS /opt/png/)

I Kitware

136

ey ey xS XXX F I IS S AT
Find Module Variables

* In general all the search steps can be
selectively disabled. For example to disable

environment paths:
find_package(<package> NO_SYSTEM_ ENVIRONMENT_PATH)

CMake 3.15+

set (CMAKE_FIND USE_SYSTEM ENVIRONMENT_ PATH FALSE)
find package(<package>)

Directing Find Modules Searches

* The default search order is designed to be
most-specific to least-specific for common use
cases. When projects need to search an
explicit set of places first, they can use the

following pattern

find_package(<package> PATHS paths... NO_DEFAULT_PATH)
find package(<package>)

Directing Find Modules Searches

« CMAKE_FIND ROOT PATH

— N directories to "re-root" the entire search under.

cmake -DCMAKE_FIND ROOT_PATH=/home/user/pi .
Checking prefix [/home/user/pi/usr/local/]
Checking prefix [/home/user/pi/usr/]
Checking prefix [/home/user/pi/]

I Kitware

ey ey xS XXX F I IS S AT
Direct Find Modules Searches

* CMAKE_PREFIX_PATH
— Prefix used by find_package as the second search

path
<prefix>/ (W)
<prefix>/(cmake|CMake)/ (W)
<prefix>/<name>x/ (W)
<prefix>/<name>x/(cmake |CMake)/ (W)
<prefix>/(lib/<arch>|1lib|share)/cmake/<name>x/ (U)
<prefix>/(lib/<arch>|1ib|share)/<name>x/ (U)
<prefix>/(lib/<arch>|lib|share)/<name>x/(cmake|CMake)/ (U)
<prefix>/<name>x/(lib/<arch>|lib|share)/cmake/<name>x/ (wW/U)
<prefix>/<name>x/(lib/<arch>|1lib|share)/<name>x/ (wW/U)

<prefix>/<name>x/(lib/<arch>|1lib|share)/<name>x/(cmake|CMake)/ (W/U)

w Kitware

140

ey ey xS XXX F I IS S AT
Direct Find Modules Searches

* <PackageName> ROOT

— Prefix used by find_package to start searching for
the given package

— The package root variables are maintained as a
stack so if called from within a find module, root
paths from the parent’s find module will also be
searched after paths for the current package.

I Kitware

141

ettt " .. eee
Debugging Find Modules [3.17+]

cmake --find-debug .

find_package considered the following paths for XYZ.cmake
/opt/cmake/.../Modules/FindXYZ.cmake

The file was not found.

find_package considered the following locations for the Config module:
/home/robert/.local/XYZConfig.cmake
/home/robert/.local/xyz-config.cmake

/opt/cmake/XYZConfig.cmake
/opt/cmake/xyz-config.cmake
The file was not found.

ettt " .. eee
Debugging Find Calls [3.17+]

set (CMAKE_FIND DEBUG_MODE 1)
find_library(PNG_LIBRARY_ RELEASE

NAMES png png _static)

find_library called with the following settings:
VAR: PNG_LIBRARY_RELEASE
NAMES: "png"
"png_static"
Documentation: Path to a library.

find_library considered the following locations:
/home/robert/.local/bin/(1lib)png(\.so|\.a)
/usr/local/cuda/bin/(1lib)png(\.so|\.a)

The item was not found.

M Kitware

143

eSSBS N, cat
Include command

* Allows for including of helper CMake routines
that are located in different files

e Use the CMAKE_MODULE PATH to search for
files

include(VTKmBuildType)

I Kitware

Example include file

set(default build type)
if(EXISTS "${CMAKE_SOURCE_DIR})

set(default build type)
endif()
if(CMAKE_BUILD TYPE CMAKE_CONFIGURATION_TYPES)

message (STATUS

${default build type})
set (CMAKE_BUILD TYPE "${default build type}" CACHE
STRING FORCE)

set_property(CACHE CMAKE_BUILD TYPE PROPERTY STRINGS

)
endif()
145

eI XN NN I I I IS X
System Introspection

e find_* commands
— find_file
— find_library
— find_package
— find_path
— find_program

WKitware

146

ettt " .. eee
System Introspection

* try compile
* Macros to help with common tests
— CheckIncludeFileCXX.cmake
— CheckCSourceCompiles.cmake
— CheckincludeFiles.cmake
— CheckCSourceRuns.cmake
— CheckLibraryExists.cmake
— CheckCXXCompilerFlag.cmake
— CheckCXXSourceCompiles.cmake
— CheckSizeOf.cmake

* try run, but only if not cross-compiling

\))((Kitware

O I I SIS I I I I I IO Y
System Introspection (cont.)

— CheckCXXSourceRuns.cmake

— CheckStructHasMember.cmake
— CheckSymbolExists.cmake

— CheckTypeSize.cmake

— CheckFunctionExists.cmake

— ChecklIncludeFile.cmake

— CheckVariableExists.cmake

I Kitware

Step 5 - System Introspection
Cooley: -

o
soft add +cmake-3.17.3 RR
Theta:

module load cmake/3.16.2 Exercise!
module swap craype-mic-knl craype-broadwell

* Follow the directions in Step5 of the CMake Tutorial

* Run cmake or cmake-gui to configure the project and
then build it with your chosen build tool

e Run the built Tutorial executable

* Which function gives better results now, Step1l’s sqrt or
Step5’s mysqrt?

I Kitware

149

OUTPUT CONTROLS

WKitware

ey ey xS XXX F I IS S AT
Build Name Controls

* You can control the build output name of targets
— Controlled at the target level
— Can be customized on a per config basis

WKitware

151

Suffix Debug Libraries

add _library(root OBJECT root.cxx)
add library(trunk STATIC trunk.cxx)
add _library(leaf SHARED leaf.cxx)
set _target properties(leaf trunk root
PROPERTIES DEBUG_POSTFIX

set (CMAKE_DEBUG_POSTFIX)

add library(root OBJECT root.cxx)
add _library(trunk STATIC trunk.cxx)
add library(leaf SHARED leaf.cxx)

Static and Shared libraries

add library(leaf _shared SHARED leaf.cxx)
add library(leaf static STATIC leaf.cxx)

set target properties(leaf shared
PROPERTIES OUTPUT_NAME

set target properties(leaf static
PROPERTIES OUTPUT_NAME

I Kitware

153

Build Versioning Libraries

library versions on UNIX

add library(leaf SHARED leaf.cxx)
set target properties(leaft PROPERTIES VERSION

SOVERSION

This results in the following library and symbolic links:

libleaf.s0.1.12
libleaf.s0.8 -> libleaf.so0.1.12
libleaf.so -> libleaf.s0.8

I Kitware

154

oo x s s X S XX I I I I S e
Build Location Controls

* You can control the build output location of:
— Executables
— Libraries

— Archives
— PDB Files

e Can be controlled globally, or at the target level
e Can be customized on a per config basis

I Kitware

155

O I I SIS I I I I I IO Y
Build Output Controls

* Executables = CMAKE_RUNTIME_OUTPUT_DIRECTORY

* Shared Libraries = CMAKE_LIBRARY_OUTPUT DIRECTORY
* Static Libraries = CMAKE_ARCHIVE_OUTPUT_DIRECTORY

* PDB Files = CMAKE_PDB_OUTPUT_DIRECTORY

* DLLUs import .lib = CMAKE_ARCHIVE_OUTPUT_DIRECTORY

» At the Target Level (properties)
— RUNTIME_OUTPUT _DIRECTORY
— RUNTIME_OUTPUT DIRECTORY_ <Config>

I Kitware

156

CUSTOM COMMANDS

WKitware

eSSBS N, cat
Custom commands

 add_custom_command

— Allows you to run arbitrary commands before,
during, or after a target is built

* Can be used to generate new files

e Can be used to move or fixup generated or
compiled files

I Kitware

158

eSSBS N, cat
Custom commands

* All outputs of the add_custom command
need to be explicitly listed.

 add_custom_command output must be
consumed by a target in the same scope
— add_custom_target can be used for this

I Kitware

159

Custom command example

add_library(CudaPTX OBJECT kernelA.cu kernelB.cu)
set _target properties(CudaPTX PROPERTIES

set(output _file CMAKE_CURRENT_BINARY _DIR}/embedded objs.h)
add_custom_command(

OUTPUT

COMMAND CMAKE_COMMAND

-P CMAKE_CURRENT_SOURCE_DIR}/bin2c_wrapper.cmake
VERBATIM
DEPENDS
COMMENT

)

add_executable(CudaOnlyExportPTX main.cu w(f .
add_dependencies(CudaOnlyExportPTX CudaPTX) ! I(ltbm“3’%9

160

O I I SIS I I I I I IO Y
CMake Scripts

* cmake —E command
— Cross platform command line utility for:

— Copy file, Remove file, Compare and conditionally copy,
time, create symlinks, others

* cmake —P script.cmake
— Cross platform scripting utility
— Does not generate CMakeCache.txt

— Ignores commands specific to generating build
environment

I Kitware

Step 6 - Custom Command and Generated Filg

o
Cooley: RR
soft add +cmake-3.17.3

Theta: Exercise!
module load cmake/3.16.2
module swap craype-mic-knl craype-broadwell

* Follow the directions in Step6 of the CMake
Tutorial

 Run cmake or cmake-gui to configure the project
and then build it with your chosen build tool

e Run the built Tutorial executable ICKitware

162

